SAMPLE PAPER - I (Unsolved)

CHEMISTRY - XI

Time allowed: 3 hrs. M. M.: 70

General Instructions:

- All questions are compulsory.
- (ii) Marks for each question are indicated against it.
- (iii) Question number 1 to 8 are very short answer questions carrying one mark each. Answer these in one word or about one sentence.
- (iv) Question number 9 to 18 are short answer questions carrying 2 marks each. Answer these in about 30 words.
- (v) Question number 19 to 27 are also short answer questions carrying 3 marks each. Answer them in about 40 words.
- (vi) Question number 28 to 30 are long answer questions carrying 5 marks each. Answer them in about 70 words.
- (vii) Use log tables, if necessary. Use of calculator is not allowed.

1.	Write the electronic configuration of Cu^+ ($Z = 29$).		
2.	State modern periodic law.	1	
3.	Give one example of intensive property.		
4.	What would you observe when HCl gas is passed into the saturated solution of NaCl?	1	
5.	Calculate oxidation state of Mn in K_2 MnO ₄ .	1	
6.	Draw the structure of $C_2H_5^+$.	1	
7.	Which reactive intermediate is formed when the covalent bond in CH ₃ -Li under-goes hetrolytic cleavage?	1	

5.	rredict the aikene as a major product obtained by the denydronalogenation o	1		
.	Br CH ₃ CH ₃ -CH ₂ —C—C—CH ₃ CH ₃ CH ₃ A sample of NaOH weighing 0.38 g is dissolved in water and solution	2		
,	is made $50.0 \mathrm{mL}$ in a volumetric flask. Calculate the molarity of the resulting solution. (Molar mass of NaOH = $40 \mathrm{g mol^{-1}}$)	_		
10.	Electromagnetic radiation of wavelength of 242 nm is just sufficient to ionis sodium atom. Calculate the ionization enthalpy of sodium in kJ/mol.	se 2		
11.	Draw the energy level diagram of molecular orbitals in N ₂ molecule.	2		
12.	On the basis of kinetic theory of gases explain why	2		
	(a) gases exert pressure.			
	(b) the volume of fixed amount of gas at constant pressure increases with the rise in temperature.	ıe		
13.	A student forgot to add the reaction mixture to a flask at 27° C and placed on the flame and heated it to 477° C. What fraction of air has been expelled out?	2		
l4.	4. State Le Chatelier principle. Predict the direction of the reaction:			
	$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$	2		
	when noble gas is added to the reaction mixture at constant pressure.			
15.	Balance the following chemical equation in alkaline medium:	2		
	$I^- + MnO_4^- \rightarrow IO_3^- + MnO_2$			
16.	Contrast the action of heat on the following and explain your answer:	2		
	(a) Na ₂ CO ₃ and CaCO ₃			

ORExplain the following technique of separation of organic compounds

(b) Friedel-Crafts reaction

(b) Differential extraction

2

2

(b) Ca(NO₃)₂ and NaNO₃

(a) Markownikov's rule

with suitable examples:
(a) Chromatography

17. Write the chemical equations for the following reactions:

		in the organic compounds?			
	(b)	Write the chemistry involved in the test used for detection of nitrogen.	2		
19.	law	te Gay-Lussac's law combing volume of gas and Avogadro's . Standard molar volume of any ideal gas is 22.7 L. Give the ues of standard temperature and pressure.	3		
20.	(a)	State Pauli's exclusion principle.			
	(b)	Which rule will be disobeyed by the following electronic configurations:	3		
		(i) $2s^3$ (ii) $2s^2 2p_x^2 2p_y^1 2p_z^0$			
21.	Acc	count for the following:	3		
	(a)	Ionization enthalpy of nitrogen $(Z = 7)$ is more than that of oxygen $(Z = 8)$.			
	(b)	Electron gain enthalpy of chlorine $(Z = 17)$ is more negative than that of fluorine $(Z = 9)$.			
	(c)	Noble gases have high positive values of electron gain enthalpy.			
22.	(a)	How many sigma (σ) and pi (π) bonds are there in CH ₂ =CH-C≡CH ?			
	(b)	Using VSEPR model predict the geometrical shapes of the following species:			
		(i) ClF ₃ (ii) XeF ₂	3		
23.	(a)	If water molecules were linear instead of angular, would water (H_2O) be a good solvent as it is ? Why or why not ?			
	(b)	How is H_2O_2 prepared by hydrated barium peroxide? Show by chemical reactions that H_2O_2 acts both as oxidising and reducing agent.	3		
24.	Comment on each of the following observations:				
	(a)	The mobilities of the alkali metal ions in aqueous solution are $\label{eq:Li^+} Li^+\!<\!Na^+\!<\!K^+\!<\!Rb^+\!<\!Cs^+.$			
	(b)	Lithium is only alkali metal to form a nitride directly.			
	(c)	Alkaline earth metals are harder than alkali metals.	3		
		132			

18. (a) Why is fusion of organic compound with sodium metal is

essential before performing tests for detection of extra elements

What happens when:

3

- (a) Sodium metal is dropped in water.
- (b) Sodium metal is heated in free supply of air.

CH,

- (c) Sodium peroxide dissolves in water.
- 25. Write the IUPAC name of the following organic compounds:

3

(a) $CH_3CH = CH - CH - CH_3$

(c) CH₃ - CH - CH - CH₃

3

- 26. K_a for an acid (HA) is 5×10^{-6} . What is the pH of 0.2M solution of HA. Find also the molar concentration of A⁻.
- 27. Write the use of green chemistry in the following day to day life processes for decrease in pollution:
 - (a) Dry cleaning of clothes
 - (b) Bleaching of paper
 - (c) Synthesis of chemicals
- 28. (a) Calculate ΔG^{θ} for conversion of oxygen to ozone :

$$3/2 O_2(g) \rightarrow O_3$$
 at 298 K

 K_p for this conversion is 2.47×10^{-29} .

(b) State the second law of thermodynamics. How is Gibbs energy change related with spontaneity of a process?

OR

- (a) Define Gibbs energy.
- (b) Predict the direction in which a reversible reaction will move when $\Delta G = +ve$.

(c) Using the data given below, calculate the value of $\Delta_r G^{\varnothing}$ and K_p for the following reaction at 298 K:

$$3CH \equiv CH(g) \rightleftharpoons C_6H_6(g)$$

$$\begin{split} & \Delta_{f}G^{\theta} \left[\text{CH} = \text{CH} \left(g \right) \right] = 2.09 \times 10^{5} \, \text{J mol}^{-1}, \\ & \Delta_{f}G^{\theta} \left[\text{C}_{6}\text{H}_{6} \left(g \right) \right] = 1.24 \times 10^{5} \, \text{J mol}^{-1} \, \text{and} \, \text{R} = 8.314 \, \text{J K}^{-1} \, \text{mol}^{-1}. \end{split}$$

5

5

- 29. (a) Draw the structure of diborane.
 - (b) Define the term inert pair effect. Explain your answer with the help of lead chlorides.
 - (c) (i) Which is more ionic SnCl, or SnCl, and why?
 - (ii) PbO₂ is a strong oxidising agent. Assign a reason for this.

OR

- (a) Account for the following:
 - (i) AlCl, is a Lewis acid.
 - (ii) CO, is a gas while silicon dioxide is a solid.
 - (iii) Carbon shows catenation property but Pb does not.
- (b) Write the balanced chemical equations for the following reactions:
 - (i) NaH + B,H₆ \rightarrow
 - (ii) $BF_3 + LiH \rightarrow$
- 30. (a) Make the following conversions:
 - (i) Propene to propanal
 - (ii) 2-Bromopropane from propene
 - (b) A hydrocarbon 'A' adds one mole of hydrogen in presence of Pt catalyst to form *n*-hexane. When 'A' is oxidised with hot alkaline KMnO₄ solution (alkaline), a single carboxylic acid containing three carbon atoms is isolated. Give the structure of 'A' and write chemical equation of reactions involved.

OR

- (a) Give one chemical test to distinguish the following pairs:
 - (i) Ethene and Ethyne
- (ii) Ethane and Ethene
- (b) An alkene C₈ H₁₆ on ozonolysis form ozonide which on hydrolysis 5 with Zn dust form an aldehyde and pentan-2-one as products. Draw the structures of alkene and write the chemical reaction involved.